Handwriting recognition

“MNIST” data set (for postal code recognition)
Handwriting recognition

Will learn:
- distinguish categories
- "softmax" nonlinearity for probability distributions
- "categorical cross-entropy" cost function
- training/validation/test data
- "overfitting" and some solutions
output: category classification
“one-hot encoding”

28x28 input pixels
(=784 gray values)
output: probabilities (select largest)

28x28 input pixels (=784 gray values)
“Softmax” activation function

Generate normalized probability distribution, from arbitrary vector of input values

\[f_j(z_1, z_2, \ldots) = \frac{e^{z_j}}{\sum_{k=1}^{N} e^{z_k}} \]

(multi-element generalization of sigmoid)
“Softmax” activation function

\[f_j(z_1, z_2, \ldots) = \frac{e^{z_j}}{\sum_{k=1}^{N} e^{z_k}} \]

in keras:

```python
net.add(Dense(10, activation='softmax'))
```
Categorical cross-entropy cost function

\[
C = - \sum_j y_j^{\text{target}} \ln y_j^{\text{out}}
\]

where \(y_j^{\text{target}} = F_j(y^{\text{in}}) \)

is the desired “one-hot” classification, in our case

Check: is non-negative and becomes zero for the correct output!

in keras:
```
net.compile(loss='categorical_crossentropy',
onitizer=optimizers.SGD(lr=1.0),
metrics=[ 'categorical_accuracy' ])
```
Categorical cross-entropy cost function

\[C = - \sum_j y_{j}^{\text{target}} \ln y_{j}^{\text{out}} \]

Advantage: Derivative does not get exponentially small for the saturated case (where one neuron value is close to 1 and the others are close to 0)

\[f_j(z_1, z_2, \ldots) = \frac{e^{z_j}}{\sum_{k=1}^{N} e^{z_k}} \]

\[\ln f_j(z) = z_j - \ln \sum e^{z_k} \]

\[\frac{\partial \ln f_j(z)}{\partial w} = \frac{\partial z_j}{\partial w} - \sum_k \frac{\partial z_k}{\partial w} \frac{e^{z_k}}{\sum_k e^{z_k}} \]

derivative of input values
Compare situation for quadratic cost function

\[f_j(z_1, z_2, \ldots) = \frac{e^{z_j}}{\sum_{k=1}^{N} e^{z_k}} \]

\[
\frac{\partial}{\partial w} \sum_j \left(f_j(z) - y_j^{\text{target}} \right)^2 =
\]

\[= 2 \sum_j \left(f_j(z) - y_j^{\text{target}} \right) \frac{\partial f_j(z)}{\partial w} \]

f(z)

slope becomes exponentially small!
Training on the MNIST images

(see code on website)

\texttt{training_inputs} \quad \text{array} \ \text{num_samples} \times \text{numpixels}

\texttt{training_results} \quad \text{array} \ \text{num_samples} \times 10 \quad \text{("one-hot")}

in keras:
\texttt{history=net.fit(training_inputs, training_results, batch_size=100, epochs=30)}

One “epoch” = training once on \textbf{all} 50000 training images, feed them into net in batches of size 100
Here: do 30 of those epochs
Accuracy during training

seems very good!
only <3% error !(?)

net: 784(input), 30, 10(output)
But: About 7% of the test samples are labeled incorrectly!
Problem: assessing accuracy on the training set may yield results that are too optimistic!

Need to compare against samples which are not used for training! (to judge whether the net can ‘generalize’ to unseen samples)
How to honestly assess the quality during training

- **Training set**: 45,000 images (used for training)
- **Validation set**: 5,000 images (never used for training, but used during training for assessing accuracy!)
- **Test set**: 10,000 images (never used during training, only later to test fully trained net)

(numbers for our MNIST example)
Accuracy during training

epochs [1 epoch ~ 50000 images]

accuracy on training data
accuracy on validation data

net: 784(input), 30, 10(output)
Accuracy during training

accuracy on training data
accuracy on validation data
goes down again!
“overfitting”

net: 784(input), 30, 10(output)

epochs [1 epoch ~ 50000 images]
- Network “memorizes” the training samples (excellent accuracy on training samples is misleading)
- cannot generalize to unfamiliar data

what to do:
- always measure accuracy against validation data, independent of training data
- strategy: stop after reaching maximum in validation accuracy (“early stopping”)
- strategy: generate fresh training data by distorting existing images (or produce all training samples algorithmically, never repeat a sample!)
- strategy: “dropout” – set to zero random neuron values during training, such that the network has to cope with that noise and never learns too much detail
Generating new training images by transformations
Accuracy during training

<table>
<thead>
<tr>
<th>epochs</th>
<th>Accuracy on training data</th>
<th>Accuracy on validation data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>0.95</td>
</tr>
<tr>
<td>50</td>
<td>0.99</td>
<td>0.95</td>
</tr>
<tr>
<td>100</td>
<td>0.99</td>
<td>0.95</td>
</tr>
<tr>
<td>150</td>
<td>0.99</td>
<td>0.95</td>
</tr>
<tr>
<td>200</td>
<td>0.99</td>
<td>0.95</td>
</tr>
<tr>
<td>250</td>
<td>0.99</td>
<td>0.95</td>
</tr>
<tr>
<td>300</td>
<td>0.99</td>
<td>0.95</td>
</tr>
</tbody>
</table>

net: 784(input), 100, dropout 10%, 50, 10(output)

(3% mistakes on test data)
Convolutional Networks

Exploit translational invariance!

different image, same meaning!
Convolutions

\[F_{\text{new}}(x) = \int K(x - x') F(x') \, dx' \]

“kernel”

In physics:
- Green’s functions for linear partial differential equations (diffusion, wave equations)
- Signal filtering

smoothing

(approx.) derivative
Image filtering: how to blur...

original pixel ➔ resulting pattern
Image filtering: how to obtain contours...
Alternative view:
Scan kernel over original (source) image
(& calculate linear, weighted superposition of original pixel values)
“Fully connected (dense) layer”
Same weights (="kernel"=”filter”) used for each neuron in the top layer!
“Convolutional layer”

(simplified picture)

Same weights (=”kernel”=”filter”) used for each neuron in the top layer!
Scan kernel over original (source) image

Different from image processing: **learn** the kernel weights!
Convolutional neural networks

Exploit translational invariance (features learned in one part of an image will be automatically recognized in different parts)

Drastic reduction of the number of weights stored!
fully connected: N^2 ($N=$ size of layer/image)
convolutional: M ($M=$ size of kernel)

independent of the size of the image!
lower memory consumption, improved speed
Several filters (kernels)

e.g. one for smoothing, one for contours, etc.
in keras:

2D convolutional layer

input: N x N image, only 1 channel [need to specify this only for first layer after input]

```python
net.add(Conv2D(input_shape=(N,N,1),
               filters=20, kernel_size=[11,11],
               activation='relu',padding='same'))
```

next layer will be N x N x 20 (20 channels!)

kernel size (region)

what to do at borders (here: force image size to remain the same)