Long short-term memory (LSTM)

Why this name? “Long-term memory” would be the weights that are adapted during training and then stored forever. “Short-term memory” is the input-dependent memory we are talking about here. “Long short-term memory” tries to have long memory times in a robust way, for this short-term memory.

Sepp Hochreiter and Jürgen Schmidhuber, 1997

Main idea: determine read/write/delete operations of a memory cell via the network (through other neurons)

Most of the time, a memory neuron just sits there and is not used/changed!

![Diagram showing signal, no important signals, and recall signal over time]
LSTM: Forget gate (delete)

Memory cell content

\[c_t = 0 \times c_{t-1} \]
LSTM: Forget gate (delete)

Calculate “forget gate”:
\[f = \sigma(W^{(f)} x_t + b^{(f)}) \]

Obtain new memory content:
\[c_t = f \ast c_{t-1} \]

NEW: for the first time, we are **multiplying** neuron values!
LSTM: Forget gate (delete)

Backpropagation

The multiplication * splits the error backpropagation into two branches.

Product rule:

\[
\frac{\partial f_j c_{t-1,j}}{\partial w_*} = \frac{\partial f_j}{\partial w_*} c_{t-1,j} + f_j \frac{\partial c_{t-1,j}}{\partial w_*}
\]

(Note: if time is not specified, we are referring to t)
LSTM: Forget gate (delete)

memory cell content

input

t-1
t
t+1

“forget gate f”

*
LSTM: Write new memory value

\[c_t = f \ast c_{t-1} + i \ast \tilde{c}_t \]

\[i = \sigma(W^{(i)} x_t + b^{(i)}) \]
\[\tilde{c}_t = \tanh(W^{(c)} x_t + b^{(c)}) \]
LSTM: Read (output) memory value

\[o = \sigma(W^{(o)} x_t + b^{(o)}) \]
\[h_t = o \ast \tanh(c_t) \]
LSTM: exploit previous memory output ‘h’

make f, i, o etc. at time t depend on output ‘h’ calculated in previous time step!

(otherwise: ‘h’ could only be used in higher layers, but not to control memory access in present layer)

\[
f = \sigma(W^{(f)}x_t + U^{(f)}h_{t-1} + b^{(f)})
\]

...and likewise for every other quantity!

Thus, result of readout can actually influence subsequent operations (e.g.: readout of some selected other memory cell!)

Sometimes, o is even made to depend on \(c_t\)
As long as memory content is not read or written, the backpropagation gradient is trivial:

\[c_t = c_{t-1} = c_{t-2} = \ldots \]

\[\frac{\partial c_t}{\partial w_*} = \frac{\partial c_{t-1}}{\partial w_*} = \frac{\partial c_{t-2}}{\partial w_*} = \ldots \]

(deviation vector multiplied by 1)

During those ‘silent’ time-intervals: No explosion or vanishing gradient!
Adding an LSTM layer with 10 memory cells:

Each of those cells has the full structure, with f,i,o gates and the memory content c, and the output h.

```python
rnn.add(LSTM(10, return_sequences=True))
```

whether to return the full time sequence of outputs, or only the output at the final time
Two LSTM layers (input > LSTM > LSTM=output), taking an input of 3 neuron values for each time step and producing a time sequence with 2 neuron values for each time step.

```python
def init_memory_net():
    global rnn, batchsize, timesteps
    rnn = Sequential()
    # note: batch_input_shape is (batchsize, timesteps, data_dim)
    rnn.add(LSTM(5, batch_input_shape=(None, timesteps, 3), return_sequences=True))
    rnn.add(LSTM(2, return_sequences=True))
    rnn.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
```
Example: A network for recall

(input time sequence)

2
1
0

(0.4)

(1)

(tell) recall!

(time)

(desired output time sequence)

0

(0.4)

(tell) recall

(time)
Example: A network that counts down

Input time sequence:

| 1 | 0 | 7 | 1 |

Tell:

time

Desired output time sequence:

| 0 | 1 |

7 steps

Signal!

time
Output of the recall network, evolving during training (for a fixed input sequence)

Learning episode (batch of 20 for each episode)
Output of the countdown network, evolving during training (for a fixed input sequence)

Learning episode (batch of 20 for each episode)